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Introduction

Bacteria, fungi, plants and animals produce awide range of specialized
metabolites, also known as natural products. Across the tree of life, these
comprise hundreds of thousands of different chemical structures —
including peptides, polyketides, saccharides, terpenes and alkaloids —
that facilitate an organism’s ability to thrive in a particular environ-
ment. They have crucial rolesin complexinter-organismalinteractions,
functioning as signals, weapons, nutrient-scavenging agents and stress
protectants to mediate competition and collaboration. In the host-
microbiome context, specialized metabolites mediate competition
and collaboration between microbes and their host.

These natural products have historically been applied with remark-
able success as antibiotics, chemotherapeutics, immunosuppressants
and crop protection agents. Natural products remain a promising
source for the discovery of such drugs based on characteristics such as
their relatively high degree of three-dimensionality (as opposed to the
often ‘flat’ synthetic structures), which may be important in modulat-
ing challenging drug targets, and their origins as natural metabolites,
which makes them likely to be substrates for transporter systems that
can enable drugs to reach their targets'”.

Although the popularity of natural product discovery programmes
inthe pharmaceuticalindustry diminished between roughly 1990 and
2010 owingtotherise of combinatorial chemistry and high-throughput
screening’, there has been a recent renaissance in natural products
researchinboth academia and small biotech start-ups. This renaissance
is catalysed by the availability of large-scale omics data, which allows
deeperaccesstothe hiddenchemical treasure troves of the biosphere.
The genes for most specialized metabolite biosynthetic pathways in
bacteria and fungi (and some in plants and animals) appear as clus-
ters in the genome of the producing organisms: more than 2,500 of
these biosynthetic gene clusters (BGCs) and their products have now
been characterized experimentally*. This physical clustering has the
potential to facilitate the identification of millions of putative biosyn-
thetic pathways for novel molecules through computational genomic
analysis’, which could provide starting points for drug discovery.

In the field studying natural products, artificial intelligence (Al)
approaches are now being developed to predict (parts of) chemical
structures of BGC products based on DNA sequence alone, fuelled by
data on known biosynthetic pathways and their chemical products,
which is increasingly standardized and stored in public databases.
Although this helps in identifying molecules with new rather than
known chemical structures (dereplication) and in linking molecules
to their biosynthetic genes®, there is an urgent need for more effective
ways to filter and prioritize the enormous predicted natural product
biosynthetic diversity to identify drug leads.

Inthe field of computational drug design, Al strategies are being
developed that may help to address this challenge by providing better
understanding of structure-activity relationships and by predicting
macromolecular targets for natural products based on their chemi-
cal structures. Here, two main approaches are traditionally used: on
the one hand, statistical modelling focuses on finding correlations
between chemical structure and biological activity, termed quantita-
tive structure-activity relationship (QSAR) modelling; on the other
hand, structure-based research attempts to fit 3D chemical structures
to protein targets (docking) and subsequently study their behaviour
on the nano- to millisecond timescale (molecular dynamics).

For both fields, Al methods have opened up new possibilities in
the design, synthesis and biological profiling of existing and new small
molecules. Central to these methods are public databases that provide

biological activity datafor large numbers of (protein) targets and chemi-
cal structures. On the basis of chemical similarity, advanced machine
learning techniques can use these data to obtain models that are able
to predict the potential activity of untested chemical structures within
these extensive chemical collections. Moreover, these methods canalso
be used to systematically analyse large datasets routinely produced
from extended molecular dynamics studies and identify hidden pat-
terns in the protein dynamics”®. This has led to exciting successes that
have advanced the understanding of the complex interplay between
small molecules and protein macromolecules. Examples include new
computer-suggested chemical structures (de novo design)’, drug
repurposing throughthe prediction of unexpected activities and guid-
ing medicinal chemistry approaches to modify and optimize drug
molecules for their biological effects (both on and off target)™.

There is thus great potential for cross-fertilization between the
fields of omics-based natural product discovery and computational
drug design (Fig.1). The use of Al could lead to a rapid acceleration of
scientific progressin these fields and to a convergence of their methods
and directions. For example, scientists have started to apply machine
learning — a subfield of Al that generates insights by using algorithms
torecognize patterns from data —to the discovery and structural char-
acterization of natural products and to predict relationships between
structure and pharmaceutical properties.

However, researchers in these fields have interacted very little so
far. In this Review, we present an integrated perspective of a group of
scientists from both areas based on an interactive workshop that dis-
cussed new ways to connect these research areas and jointly leverage
the power of Alto use the vast chemical diversity of the biosphere for the
development of new drugs. Wefirst describe applications of Alin natural
product research, including genome and metabolome mining, structural
characterization of natural products and prediction of the targets and
biological activities of natural products. We then discuss a key challenge
inrealizing the potential of Alin the field — the creationand maintenance
of large, high-quality datasets with which to train algorithms — and
how this could be addressed. We also consider the pitfalls in training
algorithms, such as overfitting, and approaches to avoid them (Box 1).

Uses of Al in natural product research

Natural product genome and metabolome mining

Several Altechnologies have been developed to accelerate the discov-
ery of natural products by predicting biosynthetic genes and metabolite
structures from sequence or spectral data, respectively. Identifying
natural product BGCs still largely relies on rule-based methods such
asthose usedinantiSMASH" and PRISM". Although these approaches
aresuccessful at detectingknown BGC classes, they are less proficient
atidentifying novel types of BGC or unclustered pathways™*. In these
more complex cases, machine learning algorithms have been shown
to offer significantadvantages over rule-based methods. For example,
the hidden Markov model-based method ClusterFinder”, the deep
learning approaches DeepBGC'®, GECCO" and SanntiS™, and several
genome mining algorithms for ribosomally synthesized and post-
translationally modified peptides (RiPPs)"*"*? each use deep learn-
ing or support vector machines to identify BGCs not captured using
canonical rule-based annotation approaches. These methods were
trained on sequence-based features such as gene families, protein
domainsand amino acid sequence properties. Although they still have
a higher false positive rate than rule-based approaches and also suf-
fer from false negatives for known types of BGC, they have already
demonstrated utility in identifying novel classes of natural product
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biosynthetic pathways"”. For example, the decRiPPter algorithm, aimed
to predict novel RiPP families, identified pristinin, which belongs to a
novel class of lanthipeptides” (Fig. 2). In addition, DeepRiPP, thanks
toitsdeep learning-based RiPP precursor detection module, enabled
the discovery of the RiPPs deepflavo and deepginsen, whose precur-
sor peptides were encoded distantly from any of their associated
biosynthetic enzymes?.

Whereas genome mining algorithms can hint at biosynthetic
potential, metabolomics allows direct detection of biosynthesized
components, even if their precise structures are unknown. However,
inferring molecular structures and substructures from mass spec-
trometry (MS) datais far from straightforward. Therefore, Alhas been
leveraged to target common challenges in MS-based metabolome
mining”, including library matching and searching using mass spectral
similarity metrics®**, molecular formula annotation***, molecular
class annotation®? and retention time prediction®. The efficacy of
these algorithms is still limited by the relatively small sets of tandem
MS (MS/MS) spectra annotated with the fragmention chemical struc-
tures of their corresponding metabolites. However, these algorithms
canbe enhanced by imputing missing data; for example, by predicting
molecular fingerprints or simulated spectrafrom metabolite structures
directly?. Similarly, NMR metabolome mining tasks are undergoing
transformation?®, as deep learning provides new avenues towards
improving NMR spectrum reconstruction, denoising®, peak picking,
J-coupling prediction® and spectral deconvolution®.

Ultimately, Al algorithms that link genome-mined BGCs and gene
cluster families to untargeted metabolome-mined spectra and pre-
dicted molecular classes should be developed. For example, a new
deep learning algorithm was recently published that can predict bio-
synthetic routes from natural product chemical structures, which could
provide a basis for matching with BGCs*. Such algorithms will help to
de-orphan BGCs and molecular structures to address the large anno-
tation gap between genomics and metabolomics. This may allow the
combination of sequence and metabolome data to predict metabolite
structures synergistically.

Structural characterization of natural products

Successful natural product drug discovery studies require the abil-
ity to unambiguously solve the structures of isolated compounds*®.
This task is challenging owing to the chemical complexity of metab-
olites existing in nature. Structure elucidation requires the collection,
analysis and compilation of multiple data types, which may include
NMR, infrared (IR), ultraviolet (UV), electronic circular dichroism
(ECD) and X-ray spectroscopy, high-resolution MS (HRMS), MS/MS,
and experimental and/or computational inspection of the encoded
enzymes within the producing BGC**%, Recently, the microcrystal elec-
trondiffraction (MicroED) technique, which has the potential to accel-
erate structure elucidation by allowing analysis of submicron-sized
crystals of chemical compounds, was added to this arsenal®*°.

In general, significant efforts have been made to improve the
structural characterization of natural products through method-
ological, instrumentational and computational means, such as quan-
tum chemistry-based theoretical calculations and Al-based structure
predictions fromMS and NMR data. Since as early as1960, Alhasbeen
used tocomplement rule-based approachesin de novo identification of
unknown compounds from MS data**2, Subsequently, Alhas been used
to predict molecular formulae from MS spectra®’, match MS spectra to
compounds in molecular databases using deep neural networks**,
elucidate structures de novo as SMILES strings from MS/MS spectra**

and predict chemical properties and identify small molecules from
MS'and collisional cross section (CCS) data®.

Similarly, Al has been used to augment NMR-based structure
elucidation and annotation. Computer-assisted structure elucida-
tion (CASE) programs*® reduce erroneous structural assignments by
generating a probability-based ranking of all possible structures given
an NMR dataset, which can guide structure determination. Exam-
plesinclude the convolutional neural network-based tool SMART 2.0,
which guided the discovery and structure elucidation of a novel class
of natural products including the new macrolide symplocolide A",
SMART-Miner*® and COLMAR*’, which identify and annotate primary
metabolites from the NMR spectra of complex mixtures, and DP4-Al,
which combines quantum chemistry-based theoretical calculations
of NMR shifts with a Bayesian approach that assigns correctness prob-
abilities to candidate structures, and with objective model selection
for picking peaks and reducing noise***'. One drawback of quantum
chemistry-based theoretical calculations of NMR shifts liesin the need
for extensive exploration of ametabolite’s conformational space, which
is computationally demanding for conformationally flexible mole-
cules. Machine learning models such as ASE-ANI°> have been developed
toaddress thisissue by filtering force field-generated conformations
and thus reducing the computational cost.

Predicting targets and biological activity

One of the most important application areas for Alin natural product
drugdiscoveryis prediction of the macromolecular targets of the natu-
ral products, their associated biological activities and possible toxici-
ties. Accurate predictions of these characteristics will provide direct
clues as to which areas of chemical space (Box 2) are most promising
for drugdiscovery. This will be key to the potential success of genome
mining, which currently resultsin lists of candidate BGCs that are too
large, with few strategies available to target efforts towards parts of
natural product space (Box 2) with actual pharmaceutical potential.
Al techniques, in combination with other technologies, can help to
address this challenge (Fig. 3).

Natural product target elucidation. The progress of novel natural
products towards being selected as drug candidates is often ham-
pered by lack of knowledge about their targets, which impedes their
preclinical testing and rational optimization. Given the complexity
of metabolite isolation and handling, large-scale experimental deter-
mination of mechanisms of action for these molecules is not feasible
owing to the costs and effort required. Computational models that
rapidly predict the most likely targets from the molecular structure
are therefore an area of active research®, Virtually all computational
drug discovery approaches have been successfully applied to eluci-
date targets of natural products, including docking®, clustering™,
bioactivity fingerprints*®, pharmacophores® and machine learning’®.
In some cases, this has also led to new insights regarding the mecha-
nisms of action of natural products that were already in clinical trials®.
Although applicability is currently limited, given this success and the
increasing accuracy of advanced machine learning models, we expect
further developmentsinthisareathat willlead to tailored and further
improved models.

Classical cheminformatics- and pharmacophore-based predictions
of bioactivity. Methods that rely on the use of classical cheminformat-
icsand computer-assisted drug discovery tools to predict bioactivities
for natural products are plentiful®’. For example, the direct application
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Fig.1| Applications of artificial intelligence in natural product and drug
discovery. Classical analyses typically use only a small fraction of datasets of
various types, such as genomics, transcriptomics, proteomics, metabolomics,
structural data and bioactivity data. Artificial intelligence (Al) methods can
help to integrate different data types to learn complex feature relationships
and develop meaningful hypotheses. Almethods that can have akeyrolein
natural product drug discovery include, but are not limited to: non-machine
learning methods (parta) such as correlation and regression (for example,

linking metabolomic and genomic data'*°); traditional machine learning
methods (partb), such as self-organizing maps (SOMs) (for example, for
macromolecular target prediction®”) and clustering (for example, grouping
gene cluster families*”?); and deep learning (part ¢), such as convolutional
neural networks (for example, for chemical structure elucidation*’), computer
vision (for example, automatic chemical image recognition’*®) and natural
language processing (for example, topic modelling for chemical substructure
exploration and annotation?”).

of the ensemble-based popular prediction methods PASS®° and SEA® to
natural products have shown some successes. Given the distinct chemi-
cal structures and physicochemical properties of natural products™*?,
the most successful applications use additional preprocessing steps
orrely on chemical descriptions and representations that are agnostic
to the chemical differences between natural products and the train-
ing data of synthetic compounds. For example, the SPiDER method,
based on self-organizing maps, was specifically developed to predict
the bioactivities of molecules and has been successfully applied to
predict the biological activity of macrocyclic natural products®***and
fragment-like natural products®.

Other successful applications of bioactivity predictions have
used representations such as 3D pharmacophore matching® of bio-
activity signatures coupled to deep neural networks®***, A notable
approach consists of constructing learned representations using the
deep learning-based chemprop message-passing neural network®.
Such models capture essential properties of molecules without directly
using classic chemical fingerprints and have enabled the prediction of
the bactericidal activity of the synthetic chemical compounds halicin®*
and abaucin®®, as well as eight additional molecules with antibiotic
properties structurally distinct from known antibiotic classes®* (Fig. 2).

Molecular dynamics simulations and structure-based prediction of
bioactivity. Structure-based approaches use spatial information about
aproteintargetto predictacompound’s binding mode. Thisinforma-
tion canbe obtained from experimentally determined structures (for
example, with X-ray crystallography) or viadeep learning-based model-
ling approaches such as AlphaFold®. Then, potential binding modes
can be enumerated via strategies such as molecular docking with
proteindynamics accounted for viamolecular dynamics approaches.
These methods are computationally expensive, but have been taking
advantage of both hardware (graphics processing unit (GPU) com-
puting) and software improvements®®, Structure-based methods can
provide awealth of information; for example, the applicability and use
of the free-energy perturbation (FEP) method has recently increased
substantially in academic and industrial drug discovery projects®.
Molecular docking, molecular dynamics and FEP could be extended
to study affinities of natural products.

Sequence- or BGC-based predictions of bioactivity. A growing num-
ber ofapproaches have been used to predictbioactivities based on DNA
and/or proteinsequence datafrom BGCswithmachinelearning>’*”, and
other strategies have the potential to do so in the near future.

One approach that leverages knowledge of existing small mol-
eculesisto predict the final product of aBGC and infer its activity from
this prediction directly, as exemplified by PRISM™. One issue with this
method is the challenge faced in predicting activities for BGCs with
poorly predicted structures, where even small mistakes in the final
prediction couldyield vastly different activities for the real compound.

Assubstructure predictionis more robust, use of discrete substructural
features such as B-lactam rings or specific amino acids may produce
more accurate results for abroader range of BGCs.

Alternative approaches emerging for bioactivity prediction draw
onthefield of natural language processing (NLP). NLP-based methods
suchasword2vec’’, originally developed for context-aware embedding
of words within sentences in text documents, have been extended to
embed protein domains within BGCs using pfam2vec'. DeepBGC,
ade novo BGC prediction tool', represents predicted BGCs using
pfam2vec-derived features from protein domains; these features are
then supplied to arandom forest classifier to predict natural product
activity. Building on the DeepBGC framework, Deep-BGCpred imple-
ments dual-model serial screening and a ‘sliding window’ strategy for
more accurate BGC boundary detection”. Just as NLP has revolution-
ized other fields, we expect continued, rapid advancesin applications
of NLP for BGC and bioactivity prediction.

Of note, the sequence boundaries for BGCs predicted by mining
tools are not precise, often missing portions of the BGC or fusing them
with others. To use BGC sequence data as input for machine learning,
it is generally necessary for an expert to manually update the BGC
boundaries. Improvements in BGC prediction will therefore be vital
for such bioactivity prediction methods and remain an area where
further researchis needed.

Bioactivity predictions based on self-resistance, regulatory or
evolutionary features. Bacteria have long been known to harbour
resistance genes that enable them to withstand the effects of anti-
biotic natural products that they themselves produce’. Numerous
antimicrobial resistance determinant databases are available, such
as the Comprehensive Antibiotic Resistance Database (CARD)™,
a National Database of Antibiotic Resistant Organisms (NDARO) and
ResFinder”. To leverage resistance information, various algorithms
have been created to attempt to link these resistance genes with
BGCs, as the resistance genes are necessary to conferimmunity in the
host’®”’. A recent study incorporated both general protein domains
and resistance genes to create amore robust feature set; this method
proved accurate when sufficient training data were available, such as
for antibacterial prediction in bacterial BGCs™.

As an additional layer of biological information, transcription
factor networks and their cognate regulatory elements canbe used to
classify BGCs on the basis of how they are controlled and to which (envi-
ronmental) signals they respond. The EvoMining framework’® is based
onthe conceptthat streptomycetes adapt to their ecological niche by
evolvingtheir primary and secondary metabolisminresponse to their
environment’”’, Regulatory networks that control BGCs and the cognate
signals that unlock their biosynthesis may provide key information on
the function of the natural products they specify. Regulatory networks
have so far beenlargely ignored ingenome mining approaches but may
well be a key determinant for biological understanding and function
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Box 1

Standard practices for evaluating a machine learning model

‘Garbage in, garbage out’ is a well-known concept in machine learning
that is intuitive to understand, but without proper model validation it
can be challenging to identify the true predictive power of a model.
There are two key points to keep in mind when assessing a model:
data balancing and model evaluation on an independent test set.

Data balancing

Datasets that are used for machine learning are usually not
homogeneous. Imbalance can exist in multiple ways that lead to
incorrect model evaluation.

e Over-representation of one or more data labels. Consider a binary
classification problem for drug-target interaction with a dataset of
10,000 positive and 100 negative data points. Without addressing
this imbalance before training, the model will likely always predict
an interaction between drug and target regardless of the input.
The model will be correct 99% of the time even though it has no
predictive power.

Over-representation of one or more data features. Thisis a

very common imbalance in biological data: some species and
molecule types have been researched far more extensively than
others, leading to datasets with an over-representation of certain
sequences or molecular structures. Models trained on such data
without consideration for this type of imbalance usually seem to
perform very well, as they make good predictions for sequences
or molecules from over-represented phylogenetic branches or
compound classes. Poor predictions on under-represented
clades often go unnoticed: either the few mispredictions in the
independent test set form such a small proportion of the total
tested data points that they do not affect the average performance
much; or worse, the under-represented clades do not appear in
the test set at all.

These data imbalances have to be targeted at three stages of
model development.

e Data selection for training and test sets before model training.
For each type of data label and data feature, data points should first
be filtered for duplicates or near-duplicates and subsequently be
divided proportionally across training and test sets. For sequence
data, pre-filtering could mean selecting one representative of a
phylogenetic clade and excluding the rest; for compound data,
one could cluster based on chemical similarity and include
only one member for each cluster. This avoids (near)-duplicates
in training and test sets that would yield an automatic correct
prediction. Proportional division of the resulting data points

prediction. Whereas BGCs predict what types of metabolite may be
produced, regulatory networks canbe harnessed to estimate how BGCs
are controlled and — notably — in response to which signals. This infor-
mation may serve as abeacon to find BGCs or metabolites required for

across training and test sets based on class and feature labels

(for example, 80% training and 20% test for each label) ensures

that the model can be separately evaluated on each data subclass,

resulting in more accurate model evaluation.
o Sampling and data weighting during model training. When a
model is not instructed otherwise, it will prioritize overall accuracy.
Often, this means that the model tolerates mispredictions for
under-represented data classes. To prevent this, data can be
weighted during model training: under-represented classes should
receive higher weights or contribute more towards a model’s loss
function such that the model penalizes prediction errors for those
classes more than prediction errors for over-represented classes.
Alternatively, it is possible to undersample or oversample the
dataset to artificially reduce or expand the dataset such that each
data class is proportionally represented. Both approaches result in
models that should be more generally applicable and less biased
towards over-represented data labels or features.
Class-specific model evaluation after model training. To evaluate
how the model performs for each data subclass, regardless of how
many data points belong to that class, it is important to assess
predictive power for each class separately. This can be done
for data labels with true or false positive or negative rates, and for
data features by assessing performance for each sequence or
compound cluster.

Cross-validation and independent test sets

Usually, machine learning algorithms are not trained just once:
developers have to play around with input features, model
parameters and model types before they find a model that works.

A frequent inaccuracy in this process is that the same test set is
often used for evaluation of these in-between models and for the
evaluation of the final model. At this point, the test set is no longer
truly independent, as decisions that influence model performance
have been made based on the test set. Thus, overfitting of the model
may remain unnoticed this way. Therefore, it is crucial to hold out an
independent test set before any training and only use this test set

to assess the model’s performance at the very end of development.
Monitoring model performance during development can be

done by selecting a validation set from training data or by doing
cross-validation with all training data. Optimally, multiple runs should
be performed with a representative standard deviation to be able

to statistically test observed improvements for significance. When
selecting (cross-)validation sets, it is equally important to take into
account data imbalance.

mutualist microbes in response to pathogeninvasion, whichmay help
to prioritize BGCs for antibiotic discovery.

Emerging Al methods in natural product drug discovery

specific purposes, such as responses to stress or disease. This could, Inall of the application areas mentioned above, Al technology is still in
for example, be used to predict which gene clusters are expressed in  its infancy and suffers from a lack of (high-quality) standardized data.
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However, refined approaches for building machine learning models using
sparseor variable training set data are being developed, and new (often
community-driven)initiatives to curate or generate high-quality datasets
are starting to emerge. Together, these advances suggest that major
improvementsin Almethodological accuracy are withinreach. Below, we
discuss algorithmic developments that could have asignificantimpact
andthen consider datageneration and standardization challenges that
willneed tobe addressed to exploit the full potential of these algorithms.

Deep learning: neural networks

s
HoN Y \\\/\>’No2 o 0
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Halicin ° o WO ; NH
o

NH
\)\(O o i
oy
Y \)\\N
HN —
A "OH
Rivulariapeptolide 1155

Supervised machine learning: support vector machine

(/_

ﬁ

Pristinin A3

Natural language processing

Deepflavo

Fig. 2| Example compounds discovered using artificial intelligence
approaches. The synthetic compound halicin and related molecules were
discovered using a deep neural network trained to predict antibiotic activity from
chemical structure®®. The structures of the rivulariapeptolides and symplocolide
Awere predicted from complex microbial extracts using a convolutional neural
network®*"*2, Pristinin A3 was discovered using a support vector machine

Molecular featurization methods. Complex molecular dataare made
machine readable through featurization, and the extent to which the
most important information in a dataset can be captured concisely
is crucial for the success of machine learning algorithms (Fig. 4).
Simplification is inherent to featurization. In rare cases, this can lead
to clashes whereby two or more molecules are represented by the same
fingerprint. Hence, afeaturization technique that aligns with the goal
of the use should be carefully chosen.

OH OH O

~

Symplocolide A

Deepginsen

that mines pangenomes to prioritize novel ribosomally synthesized and
post-translationally modified peptide (RiPP) precursors within operon-like
structures in the accessory genome of a genus'. Deepflavo and deepginsen
were discovered in part using natural language processing to predict their RiPP
precursors and their cleavage patterns from genomes®.
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The most ubiquitous method for featurizing a molecule is to
convert its molecular structure into a sequence of bits or counts®.
Algorithms to create such fingerprints are readily implemented in
cheminformatic software packages such as RDKit (see Related links)
and the Chemistry Development Kit®'; however, molecule features can
be manually determined as well®.

Circular fingerprints have enabled the most accurate identifica-
tion of structurally related natural products®* . However, circular
fingerprints were found to be less useful than pharmacophore-based
descriptors for scaffold hopping from natural products to synthetic
mimetics®. Other recent examples are MAP4 fingerprints, which
combine substructure and atom-pair concepts and can be used to
distinguish bacterial from fungal natural products®*®, Also, features
created from short molecular dynamics simulations can be used to
accurately predict partition coefficients, solvation free energies or
even ligand affinity’® ‘. Recent approaches to ‘k-merize’ 3D shapes™,
which can be sampled from molecule conformers, may also provide
promise for fingerprinting, as they may take into account the 3D shape

Box 2

of molecules. Conversely, compound features that do not describe
the compound structure at all can also be helpful, as exemplified by
bioactivity fingerprints®°¢%°,

Deep learning. A diverse array of Al algorithms have been developed
over the past decade, many of which have been successfully applied to
natural productresearch (Fig.1). One machine learning technology that
has recently received considerable attention and application is deep
learning. Deep learning has the flexibility to capture nonlinear relation-
ships and to accept non-tabular input that extends the applicability
of Al for natural product computational research to non-Euclidean
domains'®>'!, Deep learning for molecular function prediction on
molecular graphs sometimes outperforms simpler machine learning
models oncircular fingerprints®, although this seems to vary between
datasets and applications'*>', Furthermore, explainable Almethods
have been shown to improve interpretability of such deep learning
models'®*'%; for example, in the assessment of preclinical relevance'*®
and for pharmacophore and toxicophore identification'*'%%,

Visualizing and navigating chemical space

Chemical space — typically defined by using multiple compound
properties of interest, such as physicochemical properties — is

vast and largely unexplored®“. Just ‘drug-like’ chemical space,
composed of all compounds that comply with Lipinski’s ‘rule-of-

five’ guidelines for oral bioavailability?”®, has been estimated to
encompass ~10%° compounds, and even the largest chemical libraries
used for computational screening usually encompass only ~10™
compounds. Importantly for the context of this article, however, the
study that underlies Lipinski’s rule’” identified natural products as
common exceptions, and the chemical features of natural products
and typical compounds in the screening libraries of pharmaceutical
companies differ. These library compounds are often planar,
synthetic small molecules that comply with Lipinski’s rules, with mass
<500Da, whereas natural products typically have greater size and

3D complexity.

Exploring chemical space is a daunting task, not only because of
the sheer quantity of compounds that can be (virtually) enumerated,
but also because the description and labelling of compounds is by
definition a multidimensional problem. For visualization purposes,

a high-dimensional space will be reduced to only two or three
dimensions. Also, depending on the properties of interest, the
chemical space to be explored will be constructed differently.
Still, given that most of chemical space is unexplored, taking the
challenge of solving the multiparameter optimization problem to
navigate chemical space is considered a promising strategy for
identifying novel drug candidates®*%,

A common way to reduce dimensionalities to navigate chemical
space is via principal component analysis (PCA). PCA of chemical
properties has revealed that both drug molecules and natural
products occupy a very similar topological diversity distribution,
which was not the case for combinatorial compounds®®. Another
method is t-distributed stochastic neighbour embedding (t-SNE),

which has been used successfully for the design of new drug classes,
for example, new kinase inhibitors®*. A recent development to

t-SNE is the uniform manifold approximation and projection (UMAP)
algorithm, which is less computationally expensive than the previous
approach and can therefore be applied to larger datasets®”. More
recently, a Tree MAP (TMAP) algorithm was developed to visualize
data sets with sample sizes up to around 107 in a tree layout®. In

this article, using TMAP, a tree of all the compounds in the ChEMBL
database (1.13 million) with their associated biological assay data was
constructed within 10 min.

The application of unsupervised learning approaches (such
as PCA, t-SNE, UMAP and TMAP) to reduce dimensionalities in
chemical space data can be used to infer the likely biological
activity of compounds and ultimately identify new scaffolds. This
approach has proved successful in the small-molecule discovery
field, and we believe its application to natural products will open up
new avenues to characterize and address, among others, biological
activity and pharmacokinetic properties. It would be exciting to
implement the newly developed dimensionality reduction tools,
with their improved computational capabilities, in mapping both
natural product and small molecules, to identify overlapping
chemical space and ultimately transfer knowledge between the
two fields.

A starting point could be the merging of the large Papyrus
database on drug-like molecules with existing natural product
databases”. Molecular standardization of Papyrus could be applied
to the natural product databases to determine whether additional
rules or procedures are required. The resulting database could be
used as a dataset to apply existing visualization and dimensionality
reduction methods. A subsequent challenge is that the application of
these methods should be validated using known synthetic molecules
and natural products.
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Data from experiments and/or databases
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Featurization of data
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Machine learning ===  Macromolecular target and/or activity prediction

Fig. 3 | Predicting biological activities and macromolecular targets from biosynthetic genes) can be used to identify chemical features of metabolites that
genomic, metabolomic and phenotypic data. Omics datasets can be mined are predictive of certain activities or targets. Finally, large-scale standardized

to identify genetic features of natural product biosynthetic pathways, such phenotypic bioassays are key. There is considerable potential for artificial
asresistance genes, transporters and links with primary metabolism, which intelligence approaches to then predict targets and activities based on combined
are predictive of the biological activity or macromolecular target of the sets of genetic and chemical features of natural products and their biosynthetic
products of the pathway. Metabolomics and NMR (in concert with analysis of pathways. BGC, biosynthetic gene cluster.
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Fig. 4| Chemical featurization techniques. Numerous featurization
technologies are available to encode chemical information in a manner that
machine learning techniques can process. These technologies range from
simple physicochemical properties, viacommonly used circular fingerprints,

Chemical feature matrix

Biological interactions

to advanced 3D and neural net-based encoders. Use of an appropriate
featurization method is key, as the interpretation of a machine learning model
isbased on the features on which this model is trained. Although possible,
combinations of featurization techniques are not common.

Applications of deep learning include molecular graph neural
network approaches'®'"%; for instance, for predicting drug-target
binding affinity"?, SMILES-based approaches for de novo drug-like
moleculegeneration*", graph-based de novo molecular generation™®,
and property prediction'”"® and surface mesh-based approaches for
protein pocket-conditioned molecular representations'”. Moreover,
encoder-decoder architectures are used to featurize compounds for
virtual screening from different input formats'°"'*%, A comprehensive
overview of deep learning molecular representations, which can be
applied to molecular structure data in natural product research, is
providedinref.123.

Oneofthe most notable deep learning approaches of past yearsis
AlphaFold®, which can predict the 3D structure of proteins from their
primary amino acid sequence by learning from the entire corpus of the
Protein DataBank. Since the landmark breakthrough by AlphaFold, accu-
rate modelling approaches building on this work continue to raise the
bar'?* by tackling challenges such as multimeric structure prediction'”.
For natural product research, structural prediction is highly relevant,
asitcan, for example, help to predict the substrate specificities across
natural product biosynthetic enzyme families or help to predict the
evolution of drug resistance by target modification. The precedent

set by AlphaFold suggests that deep learning has the potential to solve
long-standing problems in natural product computational research,
although natural product data are currently much sparser.

As deep learning for natural product computational research is
still in its infancy, caution should be applied to its predictions'**'”.
To build trust and use the full potential of deep learning, we believe a
set of best practices needs to be established for using deep learning
techniquesin natural product research?'%,

« Compare the performance of new deep learning models with
simpler models to validate and motivate the trade-off between
interpretability and prediction results° %4,

« Clarifythescopeinwhichthe model optimally performs by defin-
ing its applicability domain and adding confidence estimates to
predictions™>%,

 Evaluate the model through cross-validation and use of a true
hold-out set, avoiding a random splitting approach with a pref-
erence for chemical clustering or temporal splitting'”, and, if
applicable, including prospective experiments. Owing to the
practice of publishing synthetic compounds as chemical ana-
logues with a structure-activity relationship, random splitting
for validation overestimates the ability of models to generalize.
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Therefore, chemical clustering or temporal splitting is essential
to truly validate created models™.

« Understand the results of a new model. If allowed by the chosen
method, map what the algorithm learned back to input features
and provide proper visualizations that allow interpretation of

results for bench scientists'¢'%%1%7,

Deep learning algorithms will definitely not always be the most
suitable tools™®. Nonetheless, we do expect that they will become
increasingly useful to address challenges such as structure elucidation
and activity prediction as datasets in compatible formats grow.

Approaches to address data limitations. One of the biggest chal-
lenges for deep learning in natural product research is open access
to large curated datasets, which is discussed in the next section.
‘Data-hungry’ algorithms such as deep learning will only improve
performanceiftraining datasets are sufficient to support model com-
plexity. Onesolution to reduce the number of effectively required data
points is to use weights from pre-trained models on larger chemical
datasets. Using pre-validated and pre-trained chemical models such
as ChemBERTa"’ or MoleculeNet'*? reduces the computational load
required to trainnew models from scratch. In many cases, pre-trained
models will also yield higher prediction accuracies'.

Although deep learning techniques can overcomeissues of incom-
plete sample labelling and small datasets, semi-supervised learning
(combining labelled with unlabelled data) can assist with learning on
datasets with incomplete labelling"*"'*2, This has been applied in the
past, for example, to improve substrate specificity predictions of
natural product biosynthetic enzymes using transductive support
vector machines, where this helped to map the shape of unlabelled
sequence space to better know how queries would relate to labelled
data points'*. Analternative is transfer learning'**, a strategy in which
knowledge from a task learned on an extensive dataset can then be
transferred to a related task for which fewer data are available. This
canimprove model efficiency and mitigate issues relating to low-data
regimes'®, for example, in de novo molecular design'®*5,

Active learning techniques, which guide the selection of unla-
belled dataforlabelling through experimentation, canalso be deployed
when labelled training data are limited'*. This has been successfully
applied to identify small molecules that inhibit the protein-protein
interaction between the anticancer target CXC chemokine receptor 4
and its ligand by actively retrieving informative active compounds
that continuously improved the adaptive structure-activity model™°.
Multiple practical challenges remain before active learning can be
broadly deployed'’, many of which revolve around the time require-
ments and cost of standardized experimental data acquisition. This
might explain why active learning has not yet been broadly deployed
in natural product research, where experiments are commonly com-
plex. For example, CANOPUS?, a deep neural network-based struc-
ture class annotation tool that is based on MS spectra, uses other Al
tools including ClassyFire™ and NPClassifier” to label data and thus
train the network. This enabled the structural elucidation of the novel
rivulariapeptolide protease inhibitors from complex mixtures?'>2,
With increasing experimental resolution and automation, we
believe that active learning will play a central part in future natural
productresearch.

Similarly, reinforcement learning, which steers the output of a
machinelearningalgorithm towards user-defined regions of optimality
viaapredefined (computational) reward function, has shown promise

in de novo design towards attractive regions of chemical space™*™, for
rule-based organic chemistry and for retrosynthesis prediction’* ™,

Data sources and data standardization

High-quality training datasets are crucial to the success of Al algo-
rithms. Unstructured datasets (for example, unannotated MS data) can
beused for unsupervised learning applications such as dimensionality
reduction and bioactivity prediction. By contrast, supervised learn-
ing requires training data that are both accurately annotated and of
sufficient scope to answer the question being addressed. Thisis a
particular challenge for natural products applications in which the
breadth of chemical spaceis high but the coverage of most published
datasets is low. Data augmentation and synthetic data generation,
althoughvaluable techniques, should be carried out with care to avoid
the accumulation of bias. In addition, data error is a challenge in the
field. Heterogeneous biological public data generated in many labs
tends to provide multiple sources of error that can hamper highly
sensitive deep learning methods™®"". Integrating data from differ-
ent datasets and ensuring that annotation methods are consistent
is therefore a major bottleneck for the development of training sets
for machine learning. In this section, we explore the characteristics
and attributes necessary to create high-quality datasets to advance
natural product discovery, including discussion of the current state
of natural product databases (Table 1) and data dissemination, the need
for datastandardization, annotation and integration and the creation
of training sets.

The natural product database landscape

The landscape of natural product databases is large and diverse,
but is also highly fragmented, and it currently contains few compre-
hensive and well-curated data resources'®. Unfortunately, natural
product-related data are often under-represented or not annotated
as natural products in large generalist databases (such as PubChem,
ChEMBL, Reaxys and Scifinder); for example, as of January 2023, only
8,951 natural products have aChEMBL identifier according to Wikidata
(see Related links). Additionally, documentation of data sources, acqui-
sition and changes — known as data provenance —is not well maintained
inmostnatural product databases. For example, literature citations or
information on source organisms and associated BGCs may be miss-
ing. Furthermore, although some databases (such as ChREMBL'®* and
BindingDB'**) include bioassay data for pure compounds, very few
include bioassay datafor natural product extracts and fractions. Finally,
some natural product databases lack options for full data download,
orare not licensed for open use by academic groups. Together, these
issues severely limit the availability of amenable datasets to train
Al'models.

Challenges with natural product data dissemination
Literature curation. Scientific publication remains the dominant
mechanism for disseminating new natural product information. Unfor-
tunately, automated data extraction from natural product journals is
often impossible because data are not in machine-readable formats,
despite the existence of simple solutions such as compactidentifiers'®,
Database completeness is also hampered by the broad spectrum of
journals that feature natural product research, including many journals
that are not natural products specific.

Consequently, database developers must manually curate arti-
clesto convert them into structured data formats. Curation difficul-
ties include image-to-structure conversion, absence of core data
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will be crucial for the future of Al-driven natural product drug discovery, it will be
important to provide the scientific community with clear incentives and rewards
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to submit and share their data. This includes opportunities for collaboration,
online (comparative) analysis capabilities linked to these databases,
community-driven annotation and knowledge build-up and increasing impact
through follow-up work and the citations that result from this. GNPS, Global
Natural Product Social Molecular Networking; NP Atlas, Natural Products Atlas;
NP-MRD, Natural Products Magnetic Resonance Database.

extended processes should become more user friendly; for example,
by including an autofill during metadata reporting, using tools that
automatically generate entries from well-defined ontologies and auto-
mated emails to authors with filtered web-crawled data that authors
can complete and send into relevant repositories.

Second, journals and/or funding agencies can mandate data depo-
sition, eliminating the need for incentives. An excellent example of this
isarecentannouncement that the Journal of Natural Productsrequires
the deposition of raw NMR datastarting in July 2023 (ref. 177). Regard-
less of the motivation, promoting community-driven data deposition
isindispensable to making the natural products field Al compatible.

The need for data standardization

The foundation of high-quality datasets begins with experimental
design and practice, the key being consistency. Currently, the most
extensive, high-quality natural product-related datasets in the public
domainhave beengenerated by afew laboratories. Typically, however,
thevalue of these datasetsis limited owing to thelack of sample diversity
and the limited number of data types available for a single study. Fur-
thermore, evenifappropriate controls and replication are used, there
canbe fundamental differences in the quality and quantity of detected
features for the same sample set, as demonstrated for intra-laboratory
liquid chromatography (LC)-MS/MS analyses'’®. As a result, a global
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assemblage of data would be incredibly valuable; yet challenges exist
of poorinteroperability (thatis, connecting data between resources)
and weak compatibility (thatis, resources use different standards and
ontologies to annotate and identify their contents).

Itisimportant to note that the quality of biologically derived data
(for example, MS resolution and/or accuracy, gene-sequencing depth
and/orerrorrate) should be defined inlight of the desired outcome. The
metabolomicsfield, forexample, hasinitiated the Metabolomics Stand-
ardsInitiative”’, which describes key parameters to report to facilitate
quality assessment. Often, Al tasks rely on having alarge corpus of data
to train and/or search (for example, clustering MS/MS spectra'®® and
binning metagenomes'™’). One challenge with this requirement is that
experimental datasets may contain only asingle or very few representa-
tivesin each class, limiting their value for model building. Dedicating
the effort to creating comprehensive training sets is an essential step
for the field as it looks to embrace Al technologies.

To achieve standardization, a key focus must be the interoper-
ability between existing natural product databases. At present,
most database managers communicate updates on an ad hoc basis.
In addition, some databases such as NP Atlas maintain interoperable
application programming interfaces (APIs) to enable regular, auto-
matic data crawls between resources. However, this becomes exceed-
ingly complexif databases operatein a continuously updating fashion,
mainlyifresources use varied data standardization strategies, such as
PubChem versus ChEMBL structure standardization protocols.

Besides specific, persistent identifiers, data interoperability
requires common languages (that is, controlled vocabulary). Open
standards have an essential role here, defining exchange formats,
vocabularies and ontologies, and experimental protocols. For example,
they could facilitate accurate description and reporting of the struc-
tural characterization of natural products'. Furthermore, the adop-
tionof universal spectrumidentifiers (USIs) toidentify mass spectrain
proteomics'®® and metabolomics'* showcases standardization tools,
enabling data analysis across datasets. Such tools have a pivotal role
inenabling large-scale studies by structuring omics dataand represent
an area of development that the natural product community should
consider. The implementation of semantic web approaches is also
an essential step forwards, which standardizes how we disseminate
knowledge and data and integrate exchange formats, linking between
resources and ontological representation’®. An overview of current
natural product ontologies is provided in Table 2.

The need for standardization in describing bioactivities of natural
products and ensuring that experimental conditions are comparable
betweenlaboratoriesis apparent. Although standards exist for reporting
thebiologicalactivities of purified compounds (for example, CREMBL'®®,
PubChem'®®, Supernatural II' and NPASS™®), such standardization
does not extend to microbial crude extracts and fractions. In addition,
metadatasuch as extract preparation methods can substantially impact
bioactivity data, yet they are rarely recorded in natural product data-
bases. Finally, as further discussed below, experimental conditions must
be described as accurately as possible, with scientists preferably using
the same growth conditions for their experiments. Overall, although
itis clear that the move towards FAIR (findable, accessible, interoper-
able and reusable) data and metadata is happening in natural product
research, many depositionssstill fail toinclude all required components.

The need for data annotation
In addition to essential metadata (such as sample taxonomy, extract
preparation protocol and instrument parameters), the addition of

contextual annotations can greatly increase the value of natural prod-
uct datasets. For example, accurate annotation of compound structures
to metabolomics datasets would provide many opportunities to build
machinelearning models thatintegrate structural and biological and/or
genomic data.

However, creation of annotated datasets faces two significant
hurdles. Thefirstis that most datasets canbe annotated in many differ-
entways, makingit unrealistic to aggregate annotations from different
studies into a single monolithic training set. Secondly, most annota-
tion methods include elements of bias and false assignment that will
influence model structure and accuracy. Therefore, although dataset
annotation by subject experts is very valuable for Al developers, the
creation and adoption of annotation standards for core information
types should be seen as a priority for the field.

The need for dataintegration

The value of linked or paired data. As omics technologies mature,
thereisanincreasing need for dataintegration between platforms. This
is relevant to the development of Al models because some questions
canbeanswered only by considering data from multiple data types. For
example, large-scaleintegration of NMR spectra and MS fragmentation
data could dramatically affect the accuracy and coverage of automated
compound identification platforms.

Integration of natural product data involves two core activities:
the pairing of datasets for analysis, such as that of the paired omics
dataplatform, or thelinking of raw or processed dataacross datatypes,
suchasthe peptidogenomics, glycogenomics, metabologenomics or
NPLinker platforms' %, In the first case, the objective is to define
which data types exist for each sample, whereas in the second case,
the goal is to perform paired analyses whereby both data types are
mined at the same time'”’. An example of this combined dataapproach
istheintegration of enzyme-constrained models and omics analysis of
Streptomyces coelicolor to reveal metabolic and genetic changes that
enhance heterologous production'®, Transcriptomics has also been
used as a constraint to improve the statistical association of BGCs
from genome data to metabolites in metabolome data by identifying
whichBGCsareinfactexpressed under the conditionsin which certain
metabolite features are observed™”.

Methodology and opportunities for data integration. Dataintegra-
tion faces several current challenges that are mostly centred around
inter-dependencies of the datatypes and the various data formats that
need to ‘talk’ to each other. Fortunately, early tools such as NPLinker™°,
GraphOmics®° and anvi'o*”' are starting to overcome some of these
challenges. However, the number of tools available that facilitate and
ease the analysis and interpretation of linked data is currently very
limited, with users still needing considerable expertise to interpret
the results. Furthermore, overparameterization of models is a risk
when linking two or multiple datasets. For example, the same informa-
tion can be present in more than one data type; it is then essential to
effectively correct for that to avoid bias. Another bottleneck is getting
the data in the appropriate format so it can be used by Al algorithms.
Standardization remains the mainissue here, particularly in areas such
as metabolomics where the dataare inherently heterogeneous owing
to the nature of the samples.

The fields of genomics, proteomics and transcriptomics have all
developed excellent community standards that have encouraged data
standardization. Outstanding challenges with separating and identify-
ing individual components from complex mixtures have hampered
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Table 2 | Recommended ontologies and controlled vocabularies for natural product research

Ontology name

Focus

Description

Biology

Plant Ontology (PO)

Controlled vocabulary, formats, standards

Structured description of terms to plant anatomy, morphology and growth
and development to plant genomics data

BRENDA Tissue Ontology (BTO)

Controlled vocabulary, formats

Structured description for enzyme sources: tissues, cell lines, cell types and
cell cultures

Gene Ontology (GO)

Controlled vocabulary, formats, standards

Framework and set of concepts for describing the functions of gene products

PIERO Enzyme Reaction Ontology

Controlled vocabulary, standards

Description of partial reaction characteristics of enzymatic reactions

Phenotype And Trait Ontology (PATO)

Controlled vocabulary, formats

Description of phenotypic qualities: properties, attributes and characteristics

NCBI Taxonomy (NCBITAXON)

Controlled vocabulary

NCBI organismal taxonomy

BioAssay Ontology (BAO)

Controlled vocabulary, formats, standards

Description of the biological screening assays

Chemistry

ChEBI

Controlled vocabulary, chemical classes,
standards

Structured classification of ‘small’ chemical compounds of biological interest

NPClassifier Ontology

Semantic vocabulary and categories in
natural products

Structured description of terms for secondary metabolism in natural
products

ChemOnt (from ClassyFire)

Controlled vocabulary, formats

Structured description of terms by extracting common or existing chemical
classification category terms from the scientific literature and available
chemical databases

Chemical Information Ontology
(CHEMINF)

Controlled vocabulary, formats

Terminology for the descriptors commonly used in cheminformatics software
applications and algorithms

Chemical Methods Ontology

Controlled vocabulary

Description of the methods and instruments used to collect data in chemical
experiments

Reaction Ontology (RXNO)

Controlled vocabulary

Reaction-name ontology

Omics

Experimental Factor Ontology (EFO)

Controlled vocabulary, formats

Systematic description of many experimental variables available in the EBI
databases

Metabolomics Standards Initiative
Ontology (MSIO)

Controlled vocabulary, formats, standards

Application ontology for supporting description and annotation of mass
spectrometry and NMR spectroscopy-based metabolomics experiments and
fluxomics studies

Sequence types and features
ontology (SO)

Controlled vocabulary, formats

Structured controlled vocabulary for sequence annotation, for the exchange
of annotation data and for the description of sequence objects in databases

The RNA Ontology (RNAO)

Controlled vocabulary

Controlled vocabulary pertaining to RNA function and based on RNA
sequences, secondary and 3D structures

GENO ontology

Controlled vocabulary, formats, standards

OWL model for genotypes, their sequence components and links to
corresponding biological and experimental entities

PRIDE Controlled Vocabulary

Controlled vocabulary, formats, standards

Ontology for PRIDE (proteomics identifications), a centralized,
standards-compliant, public data repository for proteomics data

Medical/biomedical

Ontology for Biomedical
Investigations (OBI)

Controlled vocabulary, formats, standards

Description of biomedical investigations: study design, protocols,
instrumentation, data and analyses

The Drug Ontology (DRON)

Controlled vocabulary

Ontology for drugs, containing ingredients, mechanisms of action,
physiological effects and therapeutic intent

Antibiotic Resistance Ontology (ARO)

Controlled vocabulary

Description of antibiotic resistance genes and their mutations

Integration

Semanticscience Integrated
Ontology (SIO)

Controlled vocabulary

Integrated ontology of types and relations for rich description of objects,
processes and their attributes

Unit Ontology (UO)

Controlled vocabulary

Standardized description of units of measurements

Citation Typing Ontology (CiTO)

Controlled vocabulary

Description of the nature of reference citations in scientific research articles
and other scholarly works
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similar standardization efforts in metabolomics. This is particularly
true for the field of natural products, where the range of possible
compounds from any source organism can number in the thousands
and where many of the structures remain to be discovered. The wide
range of sources, processing methods, chromatographic separa-
tion conditions and analytical approaches all combine to make data
standardization particularly difficult in this area.

Training sets for Almodels and benchmarking

Requirements for high-quality training sets. Machine-readable data
are essential for the creation of training sets for Almodels. Although the
datahave often already been collected, they are either converted into
an unstandardized written form within publications or not reported
atall. Furthermore, well-curated and consistent metadataare also key
to training successful models. Indeed, data can be of variable quality
owing to inherent differences, for example, in analytical equipment
used; however, when this is documented well, researchers can select
the relevant data for Al.

Examples of existing natural product-based training and bench-
marking sets. Chemical structure and biosynthetic data for natural
products are now reasonably well standardized and centralized. For
example, the NP Atlas"”"!, COCONUT**? and LOTUS?* databases pro-
vide information about chemical structures, and the MIBiG database
contains information on BGCs'’. These resources have been applied
astraining datasets for awide array of machine learning applications,
including the prediction of natural product-likeness of molecules***,
denovo BGC predictions'®", matching of chemical structures to their
mass spectra’”, automated chemical classification of natural product
structures® and the identification of unknown metabolites from NMR
spectral matching®.

Using USIs for mass spectrawill enable easy standardized access to
the mass spectral data for natural products, including the underlying
raw data. In this regard, spectral databases for natural products are
under active development, such as the GNPS for MS and MS/MS data
and the NP-MRD for NMR data. Importantly, entries in MIBiG, GNPS and
the NP-MRD are now all cross-linked to the NP Atlas, creating a central
hub that connects structural, spectroscopic and biosynthetic data for
natural products.

By contrast, two areas that lack natural product database cov-
erage are catalytic activities of biosynthetic tailoring enzymes (key
to predicting natural product structures) and biological activities
(key to understanding structure-activity and structure-property
relationships). In the former case, the absence of well-curated data
for tailoring enzymes limits our ability to predict core structures and
their modifications from BGC data. In the second case, the absence of
well-standardized bioactivity training sets prevents us from predicting
potential target space for newly discovered natural products, or natu-
ral product structures predicted from bioinformatic tools. Together,
these two issues limit our ability to deliver on the promise offered by
massively parallelwhole-genome sequencing and large-scale discovery
and annotation of BGCs.

Although well-curated training sets for chemical structures and
BGCs increasingly meet the demands for creating Al models, almost
no high-quality datasets exist for benchmarking the performance of
Almodelsin genome mining (sequence quality dependent) or MS data
(instrument parameter dependent). Asaresult, various datasets are cur-
rently used for performance comparisons, making it difficult to reliably
establishhow wellanovelalgorithmtruly outperformsits predecessor.

Opportunities for generating standardized data sets: the case of
biological activities. Data on biological activities and modes of action
of natural products perhaps constitute the most crucial type of datato
guide future natural product drug discovery. At the same time, these
data are currently the least standardized and systematically docu-
mented. Although databases such as ChEMBL'®® can host such data,
stored using standardized ontologies****”, the vast majority of natural
productactivity dataare never deposited and can only be foundin the
textor supplementary materials of manuscripts. Additionally, the pro-
tocols by which activity data have been generated are highly diverse,
which further frustrates the direct comparison of datasets generated
indifferentlaboratories. A unified effort for data standardization also
calls for using standardized growth media and culturing conditions.
For example, the International Streptomyces Project (ISP) media have
been designed with this in mind. The media can be ordered from the
same source, allowing direct comparison of growth conditions. Nega-
tive data for molecules not showing activity (equally important for
machine learning purposes) are mostly not reported at all, leading to
large biases in the primary literature. Populating biological activity
databases with targeted standardized datasets and culture conditions
would be highly beneficial. Some efforts already do exist that generate
specifictypes of data. For example, the NCI60 panel of tumour cell lines
for anticancer drug screening has existed for years, and molecules
can be sent to the US National Cancer Institute to be subjected to this
panel*®®, Similarly, CO-ADD constitutes acommunity-drivenapproach
to antibiotic discovery?”’, allowing compounds to be sent to a central
location to test their activities according to standardized protocols.

Conclusions and outlook
In summary, progress in Al for natural product drug discovery is pri-
marily limited by ashortage of large, high-quality datasets rather than
alack of innovative algorithms. As a general recommendation for the
field, we caution against using new algorithms solely for their ‘hype’
factor. Instead of jumping on the bandwagon of the latest Al trend,
we advise carefully considering which algorithms are best suited for
the type and quantity of data available; the fact that natural product
datasets are generally considerably smaller than generic computer
vision-related datasets, for example, may mean that simpler models
with fewer parameters may be more successful and less likely to suffer
from overfitting; also in Al, Occam’s razor is more relevant than ever.

That said, breakthroughs in the field have been made by cross-
ing disciplinary boundaries to draw on algorithms from other fields,
such as NLP. Algorithmic advances are especially needed to extract
meaningful features from heterogeneous data sources with multiple
inputs, including chemical spectra, DNA sequences, structures and
bioactivity information. Another opportunity for the field is to adopt
an ‘active learning’ approach towards dataset generation. By this, we
mean characterizing underexplored areas of sequence, chemical,
structural or bioactivity space in which gold-standard datasets are lack-
ingtoincrease the number of effective data points. Itis alsoimportant
to recognize that Al approaches will generally not be able to predict
entirely novel chemistry, mechanisms of actions that have never been
observed before or completely new catalytic activities of enzymes.
Investments in fundamental biochemical research are needed, to shed
light on those parts of biochemical space for which Al currently does
not yet provide meaningful insights*°.

New data-driven Al discoveries depend on underlying databases
being preserved and maintained over time. Ironically, although Al is
entirely reliant on high-quality data, longitudinal and stable financial
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support for the maintenance of databases is challenging to obtain.
Therefore, for future Al advances, we feel that continued support
for database maintenance and interoperability should be a priority for
international and national funding agencies. Because of the vast array
of datatypes associated with natural productresearchit is unlikely that
asingle monolithic repository will serve the needs of the natural prod-
uctcommunity. Instead, specialized repositories that focus on different
aspectsof natural product data (suchas structures, BGCs, spectral data
and biological activities) must focus onimprovinginteroperability to
develop adistributed network of dataresources. This interoperability
notonly mustinvolve the connection of entries between databases but
alsomust considerintegrated datadeposition and the adoption of com-
mon standardization protocols for core data types. There is much to
learnabout repository structure and governance strategies from other
areas of science, such as the Protein Data Bank for structural biology
and the Cambridge Structural Database for X-ray crystallography.
The natural product community must prioritize and promote these
efforts if they are to benefit from the new and exciting applications
being offered by Al-based technologies.

Finally, we emphasize that the collective resources of our global sci-
entific community far outweigh the capacity of any single lab. If appro-
priate incentives and guidelines are available, community-generated
and curated datasets can have enormous potential to advance the field
of Al-driven natural product drug discovery.

Published online: 11 September 2023
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